Difference between revisions of "Regression analysis advanced (analysis)"
From BioUML platform
m (Protected "Regression analysis advanced (analysis)": Autogenerated page ([edit=sysop] (indefinite))) |
(Automatic synchronization with BioUML) |
||
Line 19: | Line 19: | ||
* '''Response name''' – Select response name | * '''Response name''' – Select response name | ||
* '''Path to folder with saved model''' – Path to folder with saved model | * '''Path to folder with saved model''' – Path to folder with saved model | ||
− | |||
* '''Parameters for OLS-regression''' – Please, determine parameters for Odinary least squares regression | * '''Parameters for OLS-regression''' – Please, determine parameters for Odinary least squares regression | ||
** '''Max number of rotations''' – Maximal number of rotations for calculation of inverse matrix or eigen vectors | ** '''Max number of rotations''' – Maximal number of rotations for calculation of inverse matrix or eigen vectors | ||
Line 31: | Line 30: | ||
** '''Number of principal components''' – Number of principal components | ** '''Number of principal components''' – Number of principal components | ||
** '''Principal component sorting type''' – Sorting type of principal components | ** '''Principal component sorting type''' – Sorting type of principal components | ||
− | * '''Parameters for Tree-based regression''' – | + | * '''Parameters for Tree-based regression''' – Please, determine parameters for Tree-based regression |
** '''Minimal node size''' – Minimal size of node | ** '''Minimal node size''' – Minimal size of node | ||
− | ** ''' | + | ** '''Minimal variance''' – Minimal variance |
+ | * '''Parameters for Ridge regression''' – Please, determine parameters for Ridge regression | ||
+ | ** '''Max number of rotations''' – Maximal number of rotations for calculation of inverse matrix or eigen vectors | ||
+ | ** '''Epsilon for rotations''' – Epsilon for calculation of inverse matrix or eigen vectors | ||
+ | ** '''Shrinkage parameter''' – Shrinkage parameter, k >= 0 | ||
+ | * '''Parameters for combined regression''' – Please, determine parameters for combined regression | ||
+ | ** '''Number of regressions''' – Number of regressions | ||
+ | ** '''Regressions type''' – Select regressions type | ||
+ | ** '''Number of variables for regressions''' – Number of variables for each regression | ||
+ | ** '''Number of outlier detection steps''' – Number of outlier detection steps | ||
+ | ** '''Multiplier for sigma, t''' – Observation x is outlier if Abs(x - predicted x) > t * sigma | ||
+ | ** '''Classification type''' – Select classification type | ||
+ | ** '''Number of variables for classification''' – Number of variables for classification | ||
+ | ** '''Type of variable selection in classification''' – Type of variable selection in classification | ||
+ | * '''Parameters for cross-validation''' – Please, determine parameters for cross-validation | ||
+ | ** '''Percentage of data for training''' – Proportion (in %) of data for training | ||
+ | * '''Parameters for variable selection''' – Parameters for variable selection | ||
+ | ** '''Number of selected variables''' – Number of selected variables | ||
+ | ** '''Variable selection criterion''' – Please, determine variable selection criterion | ||
+ | ** '''Variable selection type''' – Please, determine variable selection type | ||
+ | * '''Parameters for outlier detection''' – Parameters for outlier detection | ||
+ | ** '''Multiplier for sigma, t''' – Observation x is outlier if Abs(x - predicted x) > t * sigma | ||
+ | ** '''Number of outlier detection steps''' – Number of outlier detection steps | ||
* '''Path to output folder''' – Path to output folder | * '''Path to output folder''' – Path to output folder | ||
Latest revision as of 18:15, 9 December 2020
- Analysis title
- Regression analysis advanced
- Provider
- Institute of Systems Biology
- Class
RegressionAnalysisAdvanced
- Plugin
- biouml.plugins.machinelearning (Machine learning)
[edit] Description
Create and save regression model or load regression model for prediction of response or cross-validation of regression model.
[edit] Parameters:
- Regression mode – Select regression mode
- Regression type – Select regression type
- Path to data matrix – Path to table or file with data matrix
- Variable names – Select variable names
- Response name – Select response name
- Path to folder with saved model – Path to folder with saved model
- Parameters for OLS-regression – Please, determine parameters for Odinary least squares regression
- Max number of rotations – Maximal number of rotations for calculation of inverse matrix or eigen vectors
- Epsilon for rotations – Epsilon for calculation of inverse matrix or eigen vectors
- Parameters for WLS-regression – Please, determine parameters for Weighted least squares regression
- Max number of rotations – Maximal number of rotations for calculation of inverse matrix or eigen vectors
- Epsilon for rotations – Epsilon for calculation of inverse matrix or eigen vectors
- Parameters for PC-regression – Please, determine parameters for Principal component regression
- Max number of rotations – Maximal number of rotations for calculation of inverse matrix or eigen vectors
- Epsilon for rotations – Epsilon for calculation of inverse matrix or eigen vectors
- Number of principal components – Number of principal components
- Principal component sorting type – Sorting type of principal components
- Parameters for Tree-based regression – Please, determine parameters for Tree-based regression
- Minimal node size – Minimal size of node
- Minimal variance – Minimal variance
- Parameters for Ridge regression – Please, determine parameters for Ridge regression
- Max number of rotations – Maximal number of rotations for calculation of inverse matrix or eigen vectors
- Epsilon for rotations – Epsilon for calculation of inverse matrix or eigen vectors
- Shrinkage parameter – Shrinkage parameter, k >= 0
- Parameters for combined regression – Please, determine parameters for combined regression
- Number of regressions – Number of regressions
- Regressions type – Select regressions type
- Number of variables for regressions – Number of variables for each regression
- Number of outlier detection steps – Number of outlier detection steps
- Multiplier for sigma, t – Observation x is outlier if Abs(x - predicted x) > t * sigma
- Classification type – Select classification type
- Number of variables for classification – Number of variables for classification
- Type of variable selection in classification – Type of variable selection in classification
- Parameters for cross-validation – Please, determine parameters for cross-validation
- Percentage of data for training – Proportion (in %) of data for training
- Parameters for variable selection – Parameters for variable selection
- Number of selected variables – Number of selected variables
- Variable selection criterion – Please, determine variable selection criterion
- Variable selection type – Please, determine variable selection type
- Parameters for outlier detection – Parameters for outlier detection
- Multiplier for sigma, t – Observation x is outlier if Abs(x - predicted x) > t * sigma
- Number of outlier detection steps – Number of outlier detection steps
- Path to output folder – Path to output folder