Difference between revisions of "Regression analysis advanced (analysis)"

From BioUML platform
Jump to: navigation, search
(Automatic synchronization with BioUML)
 
(Automatic synchronization with BioUML)
 
(One intermediate revision by one user not shown)
Line 19: Line 19:
 
* '''Response name''' – Select response name
 
* '''Response name''' – Select response name
 
* '''Path to folder with saved model''' – Path to folder with saved model
 
* '''Path to folder with saved model''' – Path to folder with saved model
* '''Percentage of data for training''' – Proportion (in %) of data for training
 
 
* '''Parameters for OLS-regression''' – Please, determine parameters for Odinary least squares regression
 
* '''Parameters for OLS-regression''' – Please, determine parameters for Odinary least squares regression
 
** '''Max number of rotations''' – Maximal number of rotations for calculation of inverse matrix or eigen vectors
 
** '''Max number of rotations''' – Maximal number of rotations for calculation of inverse matrix or eigen vectors
Line 31: Line 30:
 
** '''Number of principal components''' – Number of principal components
 
** '''Number of principal components''' – Number of principal components
 
** '''Principal component sorting type''' – Sorting type of principal components
 
** '''Principal component sorting type''' – Sorting type of principal components
* '''Parameters for Tree-based regression''' – Parameters for Tree-based regression
+
* '''Parameters for Tree-based regression''' – Please, determine parameters for Tree-based regression
 
** '''Minimal node size''' – Minimal size of node
 
** '''Minimal node size''' – Minimal size of node
** '''minimal variance''' – minimal variance
+
** '''Minimal variance''' – Minimal variance
 +
* '''Parameters for Ridge regression''' – Please, determine parameters for Ridge regression
 +
** '''Max number of rotations''' – Maximal number of rotations for calculation of inverse matrix or eigen vectors
 +
** '''Epsilon for rotations''' – Epsilon for calculation of inverse matrix or eigen vectors
 +
** '''Shrinkage parameter''' – Shrinkage parameter, k >= 0
 +
* '''Parameters for combined regression''' – Please, determine parameters for combined regression
 +
** '''Number of regressions''' – Number of regressions
 +
** '''Regressions type''' – Select regressions type
 +
** '''Number of variables for regressions''' – Number of variables for each regression
 +
** '''Number of outlier detection steps''' – Number of outlier detection steps
 +
** '''Multiplier for sigma, t''' – Observation x is outlier if Abs(x - predicted x) > t * sigma
 +
** '''Classification type''' – Select classification type
 +
** '''Number of variables for classification''' – Number of variables for classification
 +
** '''Type of variable selection in classification''' – Type of variable selection in classification
 +
* '''Parameters for cross-validation''' – Please, determine parameters for cross-validation
 +
** '''Percentage of data for training''' – Proportion (in %) of data for training
 +
* '''Parameters for variable selection''' – Parameters for variable selection
 +
** '''Number of selected variables''' – Number of selected variables
 +
** '''Variable selection criterion''' – Please, determine variable selection criterion
 +
** '''Variable selection type''' – Please, determine variable selection type
 +
* '''Parameters for outlier detection''' – Parameters for outlier detection
 +
** '''Multiplier for sigma, t''' – Observation x is outlier if Abs(x - predicted x) > t * sigma
 +
** '''Number of outlier detection steps''' – Number of outlier detection steps
 
* '''Path to output folder''' – Path to output folder
 
* '''Path to output folder''' – Path to output folder
  

Latest revision as of 18:15, 9 December 2020

Analysis title
Default-analysis-icon.png Regression analysis advanced
Provider
Institute of Systems Biology
Class
RegressionAnalysisAdvanced
Plugin
biouml.plugins.machinelearning (Machine learning)

[edit] Description

Create and save regression model or load regression model for prediction of response or cross-validation of regression model.

[edit] Parameters:

  • Regression mode – Select regression mode
  • Regression type – Select regression type
  • Path to data matrix – Path to table or file with data matrix
  • Variable names – Select variable names
  • Response name – Select response name
  • Path to folder with saved model – Path to folder with saved model
  • Parameters for OLS-regression – Please, determine parameters for Odinary least squares regression
    • Max number of rotations – Maximal number of rotations for calculation of inverse matrix or eigen vectors
    • Epsilon for rotations – Epsilon for calculation of inverse matrix or eigen vectors
  • Parameters for WLS-regression – Please, determine parameters for Weighted least squares regression
    • Max number of rotations – Maximal number of rotations for calculation of inverse matrix or eigen vectors
    • Epsilon for rotations – Epsilon for calculation of inverse matrix or eigen vectors
  • Parameters for PC-regression – Please, determine parameters for Principal component regression
    • Max number of rotations – Maximal number of rotations for calculation of inverse matrix or eigen vectors
    • Epsilon for rotations – Epsilon for calculation of inverse matrix or eigen vectors
    • Number of principal components – Number of principal components
    • Principal component sorting type – Sorting type of principal components
  • Parameters for Tree-based regression – Please, determine parameters for Tree-based regression
    • Minimal node size – Minimal size of node
    • Minimal variance – Minimal variance
  • Parameters for Ridge regression – Please, determine parameters for Ridge regression
    • Max number of rotations – Maximal number of rotations for calculation of inverse matrix or eigen vectors
    • Epsilon for rotations – Epsilon for calculation of inverse matrix or eigen vectors
    • Shrinkage parameter – Shrinkage parameter, k >= 0
  • Parameters for combined regression – Please, determine parameters for combined regression
    • Number of regressions – Number of regressions
    • Regressions type – Select regressions type
    • Number of variables for regressions – Number of variables for each regression
    • Number of outlier detection steps – Number of outlier detection steps
    • Multiplier for sigma, t – Observation x is outlier if Abs(x - predicted x) > t * sigma
    • Classification type – Select classification type
    • Number of variables for classification – Number of variables for classification
    • Type of variable selection in classification – Type of variable selection in classification
  • Parameters for cross-validation – Please, determine parameters for cross-validation
    • Percentage of data for training – Proportion (in %) of data for training
  • Parameters for variable selection – Parameters for variable selection
    • Number of selected variables – Number of selected variables
    • Variable selection criterion – Please, determine variable selection criterion
    • Variable selection type – Please, determine variable selection type
  • Parameters for outlier detection – Parameters for outlier detection
    • Multiplier for sigma, t – Observation x is outlier if Abs(x - predicted x) > t * sigma
    • Number of outlier detection steps – Number of outlier detection steps
  • Path to output folder – Path to output folder
Personal tools
Namespaces

Variants
Actions
BioUML platform
Community
Modelling
Analysis & Workflows
Collaborative research
Development
Virtual biology
Wiki
Toolbox