Difference between revisions of "Adaptive simulated annealing (analysis)"
From BioUML platform
(Plugin name added) |
Tagir Valeev (Talk | contribs) m (Reverted edits by Lan@dote.ru (talk) to last revision by BioUML wiki Bot) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
;Provider | ;Provider | ||
:[[Institute of Systems Biology]] | :[[Institute of Systems Biology]] | ||
+ | ;Class | ||
+ | :{{Class|ru.biosoft.analysis.optimization.methods.ASAOptMethod}} | ||
;Plugin | ;Plugin | ||
− | :ru.biosoft.analysis.optimization (Common methods of data optimization analysis plug-in) | + | :[[Ru.biosoft.analysis.optimization (plugin)|ru.biosoft.analysis.optimization (Common methods of data optimization analysis plug-in)]] |
=== Adaptive simulated annealing (ASA) === | === Adaptive simulated annealing (ASA) === |
Latest revision as of 16:16, 14 June 2013
- Analysis title
- Adaptive simulated annealing
- Provider
- Institute of Systems Biology
- Class
ASAOptMethod
- Plugin
- ru.biosoft.analysis.optimization (Common methods of data optimization analysis plug-in)
[edit] Adaptive simulated annealing (ASA)
ASA algorithm1 is developed to statistically find the best global fit of a nonlinear non-convex cost-function over a D-dimensional space. It is argued that this algorithm permits an annealing schedule for "temperature" T decreasing exponentially in annealing-time k, T = T0exp(-ck(1/D)). The introduction of re-annealing also permits adaptation to changing sensitivities in the multi-dimensional parameter-space. This annealing schedule is faster than fast Cauchy annealing, where T = T0/k, and much faster than Boltzmann annealing, where T = T0/ln k.
[edit] References
- L Ingber, "Adaptive simulated annealing (ASA): Lessons learned." Control and Cybernetics, Vol. 25, No. 1, pp. 33-54, 1996.